Длина пути - 2

(Такая же задача, как длина пути, но путь может не существовать).

В неориентированном графе требуется найти длину минимального пути между 
двумя вершинами. 

Входные данные
Во входном файле записано сначала число N - количество вершин в графе
(1<=N<=100). Затем записана матрица смежности (0 обозначает отсутствие ребра,
1 - наличие ребра). Затем записаны номера двух вершин - начальной и конечной.

Выходные данные
В выходной файл выведите одно число - длину пути (количество ребер, которые
нужно пройти).
Если пути не существует, выведите одно число 1543.

Пример входного файла
5
0 1 0 0 1
1 0 1 0 0
0 1 0 0 0
0 0 0 0 0
1 0 0 0 0
4 5

Пример выходного файла
1543