Напишите функцию min4(a, b, c, d)
, вычисляющую минимум четырех чисел.
Напишите сначала свою функцию min, которая вычисляет минимум из двух чисел.
Считайте четыре целых числа и выведите их минимум.
Ввод | Вывод |
---|---|
5 |
1 |
Даны четыре действительных числа: x1, y1, x2, y2. Напишите функцию
distance(x1, y1, x2, y2)
, вычисляющая расстояние
между точкой (x1,y1) и (x2,y2). Считайте четыре действительных числа
и выведите результат работы этой функции.
Ввод | Вывод |
---|---|
0 |
1.41421 |
Даны два действительных числа x и y. Проверьте, принадлежит ли точка с координатами
(x,y) заштрихованному квадрату (включая его границу). Если точка принадлежит квадрату, выведите слово YES
,
иначе выведите слово NO
. На рисунке сетка проведена с шагом 1.
Решение должно содержать функцию IsPointInSquare(x, y)
,
возвращающую True
, если точка принадлежит квадрату и False
, если не принадлежит.
Основная программа должна считать координаты точки, вызвать функцию IsPointInSquare
и в зависимости от возвращенного значения вывести на экран необходимое сообщение.
Функция IsPointInSquare
не должна содержать инструкцию if
.
Ввод | Вывод |
---|---|
0 |
YES |
3 |
NO |
Решите аналогичную задачу для такого квадрата:
Решение должно соответствовать требованиям для решения задачи C.
Ввод | Вывод |
---|---|
0 |
YES |
1 |
NO |
Даны пять действительных чисел: X, Y, Xc, Yc, R. Проверьте, принадлежит ли точка (X,Y) кругу с центром (Xc,Yc) и радиусом R.
Решение оформите в виде функции IsPointInCircle(x, y, xc, yc, r)
.
Решение должно соответствовать требованиям для решения задачи C.
Ввод | Вывод |
---|---|
0.5 |
YES |
0.5 |
NO |
Проверьте, принадлежит ли точка данной закрашенной области:
Решение оформите в виде функции IsPointInArea(x, y)
.
Решение должно соответствовать требованиям для решения задачи D.
Ввод | Вывод |
---|---|
-1 |
YES |
0 |
NO |
Дано натуральное число n>1. Выведите его наименьший делитель, отличный от 1.
Решение оформите в виде функции MinDivisor(n)
.
Ввод | Вывод |
---|---|
4 |
2 |
5 |
5 |
Дано натуральное число n>1. Проверьте, является ли оно простым. Программа должна вывести слово
YES
, если число простое и NO
, если число составное.
Решение оформите в виде функции IsPrime(n)
, которая возвращает
True
для простых чисел и False
для составных чисел.
Ввод | Вывод |
---|---|
2 |
YES |
4 |
NO |
Эпиграф: def ShortStory(): print("У попа была собака, он ее любил.") print("Она съела кусок мяса, он ее убил,") print("В землю закопал и надпись написал:") ShortStory()
Напишите рекурсивную функцию sum(a, b)
, возвращающую
сумму двух целых неотрицательных чисел. Из всех арифметических операций допускаются
только + 1
и - 1
. Также нельзя использовать циклы.
Ввод | Вывод |
---|---|
2 |
4 |
Напишите функцию phib(n)
, которая по данному натуральному n
возвращает n-e число Фибоначчи.
Ввод | Вывод |
---|---|
6 |
8 |
По данным числам n и k (0 ≤ k ≤ n) вычислите Сnk. Для решения используйте рекуррентное соотношение Сnk=Сn-1k-1+Сn-1k.
Решение оформите в виде функции C(n, k)
.
Ввод | Вывод |
---|---|
6 3 |
20 |
Дана последовательность чисел, завершающаяся числом 0. Найдите сумму всех этих чисел, не используя цикл.
Ввод | Вывод |
---|---|
1 |
17 |
Дана последовательность целых чисел, заканчивающаяся числом 0. Выведите эту последовательность в обратном порядке.
При решении этой задачи нельзя пользоваться массивами и прочими динамическими структурами данных. Рекурсия вам поможет.
Ввод | Вывод |
---|---|
1 |
0 3 2 1 |
Для быстрого вычисления наибольшего общего делителя двух чисел используют алгоритм Евклида. Он построен на следующем соотношении: НОД(a,b)=НОД(a mod b,b).
Реализуйте рекурсивный алгоритм Евклида в виде функции gcd(a, b)
.
Ввод | Вывод |
---|---|
12 |
4 |
Головоломка “Ханойские башни” состоит из трех стержней, пронумерованных числами 1, 2, 3. На стержень 1 надета пирамидка из n дисков различного диаметра в порядке возрастания диаметра. Диски можно перекладывать с одного стержня на другой по одному, при этом диск нельзя класть на диск меньшего диаметра. Необходимо переложить всю пирамидку со стержня 1 на стержень 3 за минимальное число перекладываний.
Напишите программу, которая решает головоломку; для данного числа дисков n
печатает последовательность перекладываний в формате
a b c
, где a
— номер перекладываемого диска,
b
— номер стержня с которого снимается данный диск,
c
— номер стержня на который надевается данный диск.
Например, строка 1 2 3
означает перемещение диска номер 1 со стержня
2 на стержень 3. В одной строке печатается одна команда.
Диски пронумерованы числами от 1 до n в порядке возрастания диаметров.
Программа должна вывести минимальный (по количеству произведенных операций) способ перекладывания пирамидки из данного числа дисков.
Указание: подумайте, как переложить пирамидку из одного диска? Из двух дисков? Из трех дисков? Из четырех дисков? Пусть мы научились перекладывать пирамидку из n дисков с произвольного стержня на любой другой, как переложить пирамидку из n+1 диска, если можно пользоваться решением для n дисков.
Напишите функцию move (n, x, y)
,
которая печатает последовательнось перекладываний дисков для перемещения
пирамидки высоты n
со стержня номер x
на стержень номер y
.
Ввод | Вывод |
---|---|
2 |
1 1 2 |
Постановлением ЮНЕСКО оригинал Ханойской башни был подвергнут реставрации. В связи с этим во время пользования головоломкой нельзя было перекладывать кольца с первого стержня сразу на третий и наоборот.
Решите головоломку с учетом этих ограничений. Вам не нужно находить минимальное решение, но количество совершенных перемещений не должно быть больше 200000, при условии, что количество дисков не превосходит 10.
Тесты к этой задаче закрытые.
Ввод | Вывод |
---|---|
1 |
1 1 2 |
2 |
1 1 2 |
На дорогах Ханоя было введено одностороннее круговое движение, поэтому теперь диск со стержня 1 можно перекладывать только на стержень 2, со стержня 2 на 3, а со стержня 3 на 1.
Решите головоломку с учетом этих ограничений. Вам не нужно находить минимальное решение, но количество совершенных перемещений не должно быть больше 200000, при условии, что количество дисков не превосходит 10.
Ввод | Вывод |
---|---|
1 |
1 1 2 |
2 |
1 1 2 |
В Ханое несправедливо запретили класть самый маленький диск (номер 1) на средний колышек (номер 2).
Решите головоломку с учетом этих ограничений. Вам не нужно находить минимальное решение, но количество совершенных перемещений не должно быть больше 200000, при условии, что количество дисков не превосходит 10.
Ввод | Вывод |
---|---|
2 |
1 1 3 |
Первоначально все диски лежат на стержне номер 1. Переместите диски с нечетными номерами на стержень номер 2, а с четными номерами - на стержень номер 3.
Вам не нужно находить минимальное решение, но количество совершенных перемещений не должно быть больше 200000, при условии, что количество дисков не превосходит 10.
Ввод | Вывод |
---|---|
2 |
1 1 2 |
3 |
1 1 2 |
Как и в предыдущих задачах, дано три стержня, на первом из которых надето n дисков различного размера. Необходимо их переместить на стержень 3 по следующим правилам:
Самый маленький диск (номер 1) можно в любой момент переложить на любой стержень.
Перемещение диска номер 1 со стержня a
на стержень b
будем обозначать 1 a b
.
Можно поменять два диска, лежащих на вершине двух стержней, если размеры этих дисков
отличаются на 1. Например, если на вершине стержня с номером a
лежит
диск размером 5, а на вершине стержня с номером b
лежит диск размером
4, то эти диски можно поменять местами. Такой обмен двух дисков будем обозначать
0 a b
(указываются номера стержней, верхние диски которых обмениваются местами).
Для данного числа дисков n, не превосходящего 10, найдите решение головоломки. вам не нужно находить минимальное решение, но количество совершенных перемещений не должно быть больше 200000.
Ввод | Вывод |
---|---|
1 |
1 1 3 |
2 |
1 1 3 |
Дана полоска из клеток, пронумерованных от 1 до N слева направо. Разрешено снимать или ставить фишку на клетку с номером 1 или на клетку, следующую за самой левой из установленных фишек. Изначально полоска пуста. Нужно разместить фишки во всех клетках.
Программа получает на вход количество клеток в полоске N (1 ≤ N ≤ 10).
Программа должна вывести последовательность номеров клеток, с которыми совершается действие. Если фишка снимается, то номер клетки должен выводиться со знаком минус. Количество действий не должно превышать 104. Если существует несколько возможных решений задачи, то разрешается вывести любое.
Тесты к этой задаче закрытые.
Ввод | Вывод |
---|---|
3 |
1 2 -1 3 1 |
В небоскребе n этажей. Известно, что если уронить стеклянный шарик с этажа номер p, и шарик разобъется, то если уронить шарик с этажа номер p+1, то он тоже разобъется. Также известно, что при броске с последнего этажа шарик всегда разбивается.
Вы хотите определить минимальный номер этажа, при падении с которого шарик разбивается. Для проведения экспериментов у вас есть два шарика. Вы можете разбить их все, но в результате вы должны абсолютно точно определить этот номер.
Определите, какого числа бросков достаточно, чтобы заведомо решить эту задачу.
Программа получает на вход количество этажей в небоскребе n и выводит наименьшее число бросков, при котором можно всегда решить задачу.
Тесты к этой задаче закрытые.
Ввод | Вывод |
---|---|
4 |
2 |
20 |
6 |
Комментарий к первому примеру. Нужно бросить шарик со 2-го этажа. Если он разобъется, то бросим второй шарик с 1-го этажа, а если не разобъется - то бросим шарик с 3-го этажа.
Подсказки.
1. Как следует действовать, если шарик был бы только один?
2. Пусть шариков два и мы бросили один шарик с этажа номер k. Как мы будем действовать
в зависимости от того, разобъется ли шарик или нет?
3. Пусть f(n)
- это минимальное число бросков, за которое можно определить
искомый этаж, если бы в небоскребе было n
этажей. Выразите f(n)
через значения f(a)
для меньших значений a
.